
Group 6, DATA
SoC Summer Workshop

Intelligent	Document	Automation	and	Knowledge	Enhancement	System	

IntelliDoc

(点击)

Good Afternoon every one,

This is Group 6

Today, we are extremely honored to stand here to present our project: IntelliDoc

It is an Intelligent Document Automation and Knowledge Enhancement System.

We proposed an exceptionally brilliant concept and applied it to our current product.

I promise to you that this system is incredibly fancy and totally original.

Motivation

GPT, you’re doing it
wrong!

GPT, could you help me fix
the coding error?

Sorry, I made a mistake, it
should be……

OK, in your code……

GPT, WHITE has corrected
you! It should be……

GPT, could you help me fix
the coding error?

Sorry, I made a mistake, it
should be……

OK, in your code……
Crowd Sourcing

Before introducing our project, I'd like to explain the motivation behind this.

（点击）

OK, here we showcase some common scenarios in our daily life.

In fact, AI assistants like GPT have become significant in our lives.

However, in scenarios like this, errors made by GPT can be incredibly frustrating

Indeed, this is a common issue with all LLMs, or rather, a trend for future development.

So, the key question is: how do we modify the model?

We believe the answer lies in data, which perfectly fits our team name. Data has become almost the most crucial factor determining the effectiveness of Large Models.

(点击)

So, where does the data come from?

（点击）

They are from human activities！

And this is what we call “crowdsourcing”. It can gather huge amount of data from people's local writing and development processes.

So why don’t we focus on the collection and reuse of data?

This is the reason and inner motivation of us.

（点击）

System Overview

AI-assisted document
editor based on

Kubernetes and Cloud

Collecting data when
using for a project-

tailored AI

Multiple components for
efficient and intelligent

document editing

(点击)

Then, I'd like to introduce our project starting with the system overview.

（点击）

Our project is divided into three parts:

	 （点击）AI-assisted document editor based on Kubernetes and Cloud

	 （点击）Multiple components for efficient and intelligent document editing

	 （点击）Collecting data when using AI.

（点击）

Demonstration

https://github.com/Cloud-Computing-Group-NUS/Project-Code

100.24.7.54:32478

Here is our WebUI demonstration of the whole system

We prepared a video demo and we offer you a chance to explore the platform by your self at the end of slides

(点击视频播放)

Here we go！

OK, the video is over and here we give oue the link, you can experience now if you can not wait

As you can see in the video,

- the left side corresponds to file interactions with cloud storage.

- Users can create, delete, modify, and save FileObject here.

- The two browser on the right

- Display the content of the user-selected file

- and AI-modified file content awaiting user’s requirements.

- And here we go to the bottom side

- This is the ChatBot just like GPT4

- There are 2 buttons

- One is aim to generate AI-modified file content

https://github.com/Cloud-Computing-Group-NUS/Project-Code

- Another is to submit corresponding modifications to the database.

•

Overal pipeline

The whole system is like this , consisting of numerous fancy parts and they will be explained and analyzed in the following parts

(add)

And here we offer a much more spectacular glimpse of our system.

Let's follow the data flow throughout the whole project to go deeper into it step by step

Frontend Pod::

Function
User interface for document input and editing

Using Nginx

Design Advantages

- Responsive
- Real-time collaboration
- Instant feedback
- Preprocessing

The first pod, which is also the most labor-intensive one in the entire project, is our frontend pod.

(点击)

It provides User interface for document input and editing.

The detailed message about how to use it is briefly introduced in previous video and it’s much more fancy if you explore it by yourself.

I bet it’s incredibly magic!

Actually, we met some problems at first.

Users access the website through their own browsers, but our entire frontend is connected to a backend deployed with k8s.

Without forwarding improvements, direct access to the backend from the browser will be denied. So, we used NGINX for forwarding.

Preprocessing Pods
Function

Cleanses and formats input data

Design Advantages

- Parallel processing
- Dynamic scaling
- Flexible logic
- Load optimization

（换zsy）（点击两下） The next pod is the preprocessing pod, whose function is to cleanse and format input data. For scenarios where numerous users input
simultaneously, we need to maintain a sufficiently robust and quick-processing structure to ensure the stability of the entire system. This guarantees that each user's
input can be instantly responded to and loaded into the storage queue, ultimately scheduling resources to process this request as quickly as possible. This pod also
serves the function of load balancing and intelligent scheduling.

Context Organizer Pod/
Cloud Drive

Function

 Formats content for display and interaction

Design Advantages

- Parallel Processing
- Flexible Formatting
- Adaptive

Another data flow is directed to the file-related POD, which we call the context organizer pod. Its main function is similar to cloud storage, but its design ensures that
modifications to the same file by different users are correctly processed in sequence. Additionally, all resources are shared in real-time. Although we encountered some
minor issues during implementation, causing occasional display problems in our interface, at least synchronization is achieved. (笑) The PV established here is to store
the content of the cloud storage in real-time to disk resources, preventing loss of cloud storage content.

Message Queue

Function
Temporary data storage and transmission

Design Advantages
- Decoupling of frontend requests and ai-
agent response
- High Throughput
- Data-Persistence
- Resource saving
-

（点击） The next part is the message queue, which is one of the most interesting design aspects of our entire project. Its function is simply temporary data storage and
transmission, but in the Kubernetes environment, it also takes on the role of creating new jobs. We implemented this queue functionality ourselves and maintained the
contextual order. When resources allow, it processes corresponding requests for each user as quickly as possible. We will introduce this part in more detail later.

OpenAI Interaction Job::

Function
Uses AI-assistant to handle requests

Design Advantages

- Concurrent Handling
- Intelligent API Management
- Failover Mechanism
- ‘Secrets’ to protect API KEY

-

（换xxy）

So i will travel you through the rest of our pipeline. Next stop is OpenAI interaction job.

OpenAI interaction Job is responsible for forwarding message distributed by the message queue to a given OpenAI assistant and reply with gpt’s response.

 For each job, it's lifecycle begins from a new webpage is opened , where exactly a unique id is assigned to a user, and then mapped to a particular assistant and a
exclusive thread . when the webpage is closed, the job, assistant, and thread are deleted.

During its lifecycle, it creates an assistant and a thread to maintain multi-turn conversation.

Due to the message queue design, multiple agents can answer users' requests on different devices at the same time.

Also, secrets is implemented to protect your OpenAI key.

Knowledge Base File Generation::

Function
Create structured knowledge files

Design Advantages

- Automated Extraction
- Incremental Updates
- Versatile Usage

Knowledge Base File Generation synthesizes the code generated by OpenAI and your modified code, format them into certain json format and save the message into
MongoDB database.

MongoDB Database::

Function
Persistent document storage

Design Advantages

- Flexible Storage
- Large-Scale
- Fast Querying
- Powerful Aggregation

（点击两下） To address the storage needs of user-generated training data, our project uses MongoDB operator as a method for storing documents. Its main role is to
provide persistent document storage. Its characteristics of flexibility, large-scale capacity, and fast querying perfectly meet our needs for parallel collection and
organization of training data.

Backend API Pod
Function
Uses correction messages from mongoDB
Database to finetune a new model

Design Advantages

- High Concurrency
- Horizontal Scaling
- Caching
- Stateless

 Backend API Pod uses correction messages from mongoDB Database to finetune a new model. The whole procedure is like customing our own finetune dataset. With
more modification of more people,

 the ai understands better our project target, which is indeed our idea of crowd sourcing.

 In essence, Backend API Pod and OpenAI Interaction Job are connected on a cloud provided by OpenAI. Therefore, OpenAI Interaction job can automatically pull the
latest version of finetuned model, providing latest tailored service behind the scene.

 Also, notice that finetune is indeed costly. Look at the picture on the top right corner. One basic finetune procedure(10 messages) with 100 epochs costs 0.02 USD,
which amounts to the total test messages we've sent during our whole development project. You can see that a simple finetune costs 3k tokens.

Fancy Design

Message Queue

Next, given that our course revolves around Kubernetes, we want to focus on the message queue part, which utilizes the most Kubernetes features. （点击）

Message Queue

Hello

你好

Bonjour

Hello！

你好！我能为
您做什么呢？

Bonjour！
robust

scalable
cloud-native

First, when multiple users simultaneously make conversation requests, （点击）the message queue sorts all requests in chronological order and maintains a job for each
user. （点击）It continuously forwards each user's session to the corresponding job for processing. When a user closes the interface, it also closes the job corresponding
to that user. In other words, this pod completes the creation of jobs, content processing and forwarding, and final closure operations. This is achieved by calling the
Kubernetes API. To give this pod all the relevant permissions, we used RBAC (Role-Based Access Control), which is a mechanism for managing access permissions to
the Kubernetes API. It allows administrators to dynamically configure access policies. Through these methods, we have implemented fine-grained control arrangements,
maximizing the parallel advantages of Kubernetes, thereby ensuring a good user experience.

Design Advantages

Technically
- High Scalability

- Robust Real-time Processing Capabilities

- Flexible Data Processing Workflow

- High Availability and Fault Tolerance

- Optimized Performance

UX Layer
- Security

- Intelligence

- Cost Efficiency

- Developer and Maintenance Friendly

- Optimized User’s Experience

Only CLOUD can do

In conclusion, the deliberate design of our project lies in two aspects.

Technically, it has high scalability: with independent scaling, automated horizontal scaling

and data-level scaling.

It has robust real-time processing capabilities with stable web socket connections, high-throughput streams and parallel preprocessing.

It has high availability and fault tolerance, with all key pods deployed on multi-instances, and a Persistent Volume maintaining the finetune database as well as the Cloud
Drive. Due to pod's property of self-recovery, it has error recovery ability.

It has optimized performance given that pods' lifecycle exists only when a front end tab exists

From the aspect of UX Layer design, it maintains high security with secrets implemented, Intelligence with a finetuned ai assistant, it is cost effective as few pods will stay
idle but running.

It is incredibly developer and maintainance friendly, as we've containerized all the code and modularize our design.

Last but not least, it provides excellent user experience, with all fancy functions as real-time code rendering, AI assistance, clear and beautiful frontend webpage.

Group 6, DATA
SoC Summer Workshop

Supports	up	to	50(theoretically)	collaborators	online

DEMO

HTTP: 100.24.7.54:32478
Warning:
- First create a folder of your name, then feel free to edit and create under your workspace

- For naming the folders, please follow the standard lowerCamelCase

- Don’t send too many requests at one time, as every token counts

- Open exactly one webpage at the same time

- First select a file, then ask questions related to the file

- Legal file types: .cpp, .py, .md(with additional rendering)

- First time set up may be slow, wait patiently

- Have fun!

Future Work

“ A general Cloud-native Finetuned-AI agent Architecture”

Group chat summary

File summary

Private database

Eventually, we'd like to extend a little and envision the broad application of our project.

To sum up, our project builds a persistent Memory (which is the cloud drive), a knowledge base for storing messages for finetuning, a message queue for multi-person
collaboration, the architecture can extend to way more scenarios.

For instance, if you want a chat-bot to assist you in your work group, like summarizing hundreds of messages you've sent during a heated discussion, or telling you the
latest deadline, saving your effort of scrolling through all the group files,

then the memory saves all the messages, and send to the message queue a summary request, which sends request to OpenAI and get the summary answer.

Group 6, DATA
SoC Summer Workshop

https://github.com/Cloud-Computing-Group-NUS/Project-Code/tree/main

Thank you

https://github.com/Cloud-Computing-Group-NUS/Project-Code/tree/main

