
IEEE TRANSACTIONS ON NETWORKING 1

Efficient Headroom Allocation With Two-Level
Flow Control for Lossless Datacenter Networks
Danfeng Shan , Jinchao Ma , Yunguang Li , Boxuan Hu , Tong Zhang , Yazhe Tang , Hao Li ,

Jinyu Wang , and Peng Zhang

Abstract—In datacenters, lossless network is very attractive
as it can achieve ultra-low latency. In commodity Ethernet,
lossless forwarding is achieved by hop-by-hop Priority-based
Flow Control (PFC). To avoid buffer overflow, PFC-enabled
switches need to reserve some buffer as headroom, absorbing
in-flight packets during the delay for backpressure messages to
take effect. However, with the growing link speed in production
networks, the buffer becomes increasingly insufficient, and the
headroom can occupy a considerable fraction of buffer. As a
result, the remaining buffer for absorbing normal traffic bursts
is significantly squeezed, leading to frequent PFC messages that
degrade the network performance. Worse yet, we find that
the current static and queue-independent headroom allocation
scheme is quite inefficient, resulting in significant buffer wastage.
In light of this, we propose Dynamic and Shared Headroom
allocation scheme (DSH), which dynamically allocates headroom
to congested queues and enables sharing of allocated headroom
among different queues. To achieve this, DSH first introduces
port-level flow control, which performs flow control at the
granularity of individual ports, guaranteeing lossless forwarding
with a small fraction of per-port headroom. With this lossless
guarantee, the switch is liberated for dynamic headroom adjust-
ment. DSH dynamically allocates per-queue headroom based on
the congestion status of each queue. Meanwhile, DSH preserves
the queue-level flow control to protect the non-congested queues
from being paused by congested queues, ensuring performance
isolation on buffer sharing. Extensive experiments show that DSH
can reduce the flow completion time by up to ∼78.8%.

Index Terms—Priority-based flow control, bursty traffic, buffer
management.

Received 23 September 2024; revised 10 April 2025; accepted 30 July
2025; approved by IEEE TRANSACTIONS ON NETWORKING Editor J. S. Sun.
This work was supported in part by the National Natural Science Foundation
of China under Grant 62372363, Grant 62472219, Grant 62132007, Grant
62172323, and Grant 62272382; in part by the National Key Laboratory of
Advanced Communication Networks Fund under Project SCX24641X001;
in part by the Natural Science Foundation of Jiangsu Province under Grant
BK20242038; and in part by China Post-Doctoral Science Foundation under
Grant 2024T171163. The preliminary version of this paper was
published in the Proceedings of the 2023 IEEE ICDCS [DOI:
10.1109/ICDCS57875.2023.00019]. (Corresponding author: Tong Zhang.)

Danfeng Shan, Jinchao Ma, Yunguang Li, Boxuan Hu, Yazhe Tang,
Hao Li, Jinyu Wang, and Peng Zhang are with the School of
Computer Science and Technology, Xi’an Jiaotong University, Xi’an
710049, China (e-mail: dfshan@xjtu.edu.cn; majc2002@stu.xjtu.edu.cn;
yunguangli1@outlook.com; huboxuan2004@gmail.com; yztang@xjtu.edu.cn;
hao.li@xjtu.edu.cn; jinyu.wang@xjtu.edu.cn; p-zhang@xjtu.edu.cn).

Tong Zhang is with the College of Computer Science and Technology,
Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 211106,
China (e-mail: zhangt@nuaa.edu.cn).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TON.2025.3596437, provided by the authors.

Digital Object Identifier 10.1109/TON.2025.3596437

I. INTRODUCTION

LOSSLESS network is increasingly attractive in datacen-
ters as it can provide ultra-low latency for applications

[2], [3], [4], [5], [6]. In commodity Ethernet, lossless trans-
mission is achieved by the hop-by-hop Priority-based Flow
Control (PFC) mechanism. To avoid packet dropping, a PFC-
enabled switch sends a PAUSE frame to its upstream device
when its buffer is about to overflow. Upon receiving the
PAUSE frame, the upstream device holds back the packet
transmission. To prevent buffer overflow, a fraction of buffer
should be reserved as headroom to absorb in-flight packets
before the PAUSE frame takes effect. However, in large-scale
networks, PFC messages can result in serious performance
issues, such as head-of-line blocking, congestion spreading,
collateral damage, and even deadlocks [3], [5], [7], [8], [9],
[10], [11], [12], [13],. Therefore, it is a common belief that
PFC should be triggered as infrequently as possible. Ideally,
PFC should only serve as a backup method to ensure lossless
packet transmissions.

However, due to the recent industrial trends, it is more
and more likely that datacenter networks (DCNs) suffer from
frequent PFC messages. Specifically, the link speed of DCN
has rapidly grown from 1Gbps to 40Gbps/100Gbps and will
continuously increase to 400Gbps in the near future [3], [14].
The amount of required headroom is increasingly large as it is
positively related to the link speed. Unfortunately, the memory
size in the switching chip cannot keep pace with the increasing
link capacity [15], [16], [17]. This is because datacenter
switches usually employ on-chip memory for high-speed and
low-latency access, and the memory size is limited by the
chip area and cost. Specifically, the buffer size (related to
switching capacity) has decreased by 4× over the past decade
(§III-A). Under these trends, a considerable amount of buffer
should be reserved as headroom, significantly squeezing the
buffer space for accommodating normal traffic. As a result, the
queue length can easily hit the PFC pause threshold, leading
to frequent generation of PFC messages. Although recent
advances in end-to-end congestion control (CC) algorithms
[2], [3], [4], [5] can help keep persistent buffer occupancy low,
they cannot completely tackle this issue. This is because end-
to-end CC takes at least 1 round-trip time (RTT) to respond to
traffic changes, unable to control over short-term congestion
events, which are very common in DCNs. Specifically, studies
have shown that most flows will be finished within 1 RTT in
future DCNs [18], [19] and most congestion events will be

2998-4157 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and
similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on August 21,2025 at 01:56:06 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0852-5955
https://orcid.org/0009-0005-3754-2967
https://orcid.org/0009-0005-4155-2914
https://orcid.org/0009-0003-7778-4069
https://orcid.org/0000-0003-2477-7140
https://orcid.org/0000-0002-9443-8577
https://orcid.org/0000-0001-8776-6911
https://orcid.org/0000-0002-9449-3453
https://orcid.org/0000-0001-7721-2675

2 IEEE TRANSACTIONS ON NETWORKING

caused by sub-RTT traffic bursts [20]. Within 1 RTT, it is
the buffer management scheme that determines whether PFC
messages can be avoided.

Given the considerable headroom requirements, we find that
the current headroom allocation scheme, referred to as Static
and Independent Headroom (SIH) allocation in this paper,
is quite inefficient in headroom utilization. Our experiments
show that 75% of headroom remains unused 99% of the time
even when the network load reaches 90% (§III-B). We analyze
the root causes of this inefficiency through experiments, and
find that the underlying reason lies in SIH’s static and queue-
independent nature. Specifically, SIH reserves a fixed amount
of headroom independently for each ingress queue on every
port. However, this approach is quite inefficient due to the
following two reasons.

(1) The actual required headroom is dynamic to the traffic
characteristics. The required headroom is determined by the
traffic arrival and departure rates at ingress queues, which
vary over time. Despite this, SIH allocates a fixed amount
of headroom for each queue. To avoid buffer overflow under
any circumstances, the static manner entails SIH allocating
headroom based on the worst-case scenario, which, however,
rarely occurs, resulting in significant wasted headroom buffer
most of the time.

(2) The ingress queues on the same port naturally share the
uplink capacity. The traffic arriving rate to an ingress queue is
less than the link capacity as long as other ingress queues on
the same port are active. However, SIH fails to take advantage
of this sharing property. Instead, it reserves headroom buffer
independently for each ingress queue, resulting in wasted
headroom buffer.

Furthermore, our experiment results demonstrate that SIH’s
inefficiency cannot be fundamentally addressed by simply
reducing the reserved headroom size (§III-C). This is because
the worst case, although rarely, does occur. As a result, current
approaches, although enhancing headroom sharing by over-
subscribing the headroom buffer [21], [22], can result in the
risk of packet loss, which is unacceptable for RoCE transport
with Go-back-N loss recovery. Consequently, a brand-new
headroom allocation scheme is needed to radically resolve this
issue.

In light of these observations, we propose Dynamic and
Shared Headroom allocation scheme (DSH) (§IV) to improve
the headroom efficiency without risking packet loss. Our key
idea is that the headroom allocation is closely correlated to
the flow control. The current PFC mechanism performs flow
control independently for each queue, requiring the headroom
to be statically reserved per queue independently. To enable
headroom sharing, the flow control should be performed
across different queues jointly. Based on this idea, DSH
incorporates port-level flow control besides queue-level flow
control. The port-level flow control performs port-wise flow
control operations, which enables DSH to guarantee lossless
forwarding with a minimal amount of reserved headroom. It
is based on the observation that different ingress queues in the
same port naturally share the common uplink capacity. Thus,
to avoid packet overflow, there is no need to independently
reserve headroom for each ingress queue. Instead, DSH only

Fig. 1. Hop-by-hop priority-based flow control.

needs to reserve headroom for each port and make the ingress
queues on the same port share the reserved headroom. If any
queue at a port starts to occupy the headroom, the queue
generates a port-wise flow control message to pause the entire
upstream port. This, however, sacrifices the isolation across
different queues. Thus, DSH retains the queue-level flow
control and makes port-level flow control merely as a backup
measure against packet loss.

The queue-level flow control performs queue-wise flow
control actions, similar to PFC. It is motivated by the obser-
vation that not all queues require headroom simultaneously.
Therefore, DSH dynamically allocates headroom to a queue
only when it becomes congested. This ensures that headroom
is provisioned only when necessary, preventing wastes. Fur-
thermore, the amount of headroom allocated is dynamically
adjusted based on traffic characteristics, aligning with the
actual demands of congested queues and reducing buffer
waste. Additionally, DSH allows headroom to be shared
among multiple ingress queues, leveraging statistical multi-
plexing to improve buffer utilization efficiency.

We evaluate DSH with extensive ns-3 simulations (§V).
The microbenchmarks show that DSH can effectively mitigate
the impairments (including collateral damage and deadlock)
induced by PFC, while guaranteeing performance isolation
among different traffic classes (§V-A). Our large-scale sim-
ulations show that DSH reduces the flow completion time by
up to ∼78.8% for short fan-in flows and up to ∼45.2% for
other flows (§V-B).

The rest of the paper is organized as follows. §II introduces
the background of PFC and switch buffer. §III discusses the
problem of the current headroom allocation scheme. Next, §IV
describes the design of DSH. In §V, we present the evaluations
of DSH. Finally, we discuss some related work in §VI and
conclude in §VII.

II. BACKGROUND

In this section, we introduce the background of PFC and
switch buffer.

A. Priority-Based Flow Control

Ethernet-based datacenter networks rely on Priority-based
Flow Control (PFC) [23] to guarantee lossless packet for-
warding. PFC is a hop-by-hop flow control mechanism (as
shown in Fig. 1). In a PFC-enabled switch, once the length of
an ingress queue exceeds a preset threshold (i.e., Xoff), the
switch sends a PAUSE frame to the upstream device. Upon
receiving the PAUSE frame, the upstream device suspends the
packet transmission for the duration specified by the PAUSE
frame. When the ingress queue length falls below another

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on August 21,2025 at 01:56:06 UTC from IEEE Xplore. Restrictions apply.

SHAN et al.: EFFICIENT HEADROOM ALLOCATION WITH TWO-LEVEL FLOW CONTROL FOR LOSSLESS DCNs 3

threshold (i.e., Xon), the device sends a PAUSE frame with
zero duration (which we refer to as RESUME frame) to the
upstream device, which recovers the packet transmission.

To prevent packet dropping, Xoff should be set conserva-
tively. This is because it takes time for the PAUSE frame to
arrive at the upstream device and take effect. To prevent buffer
overflow, enough buffer beyond Xoff should be reserved to
accommodate in-flight packets during this time. The reserved
buffer beyond Xoff is called buffer headroom.

In the PFC standard [23], traffic can be classified into 8
priority classes. Each priority class is mapped to a separate
queue, with packets of different priority classes placed into
their respective queues. The PFC messages carry the priority
information and can pause/resume one or more traffic classes.

B. Buffer Architecture in PFC-Enabled Switches

On a switching chip, the packets waiting to be transmitted
are stored in a packet buffer. Today’s commodity high-speed
switching chips usually employ on-chip shared memory for
high-bandwidth and low-latency packet access [3], [14], [24],
[25], [26], [27], [28], [30], [31]. To improve buffer efficiency,
the scarce memory is dynamically shared among all queues.
Shared-memory switches typically employ output-queueing,
where packets are placed into queues dedicated to their egress
ports (i.e., egress queues). Output-queued switches do not con-
tain physical ingress queues. To support PFC, which triggers
PAUSE/RESUME messages based on ingress queue lengths,
switches record the length of each logical ingress queue with
a counter [3]. Furthermore, in modern switch architectures,
shared buffer allocation for lossless traffic is managed from
the ingress perspective, i.e., the switch allocates buffer space
to ingress queues. When the length of an ingress queue exceeds
its allocated buffer, incoming packets are not admitted into the
corresponding buffer and must be paused.

As shown in Fig. 2, the buffer from ingress perspective is
partitioned into three segments [28], [32], [33].
• Private pool: buffer space reserved for each queue, which

guarantees each queue’s minimum buffer resource.
• Shared pool: buffer space shared among all queues.
• Headroom pool: buffer space reserved for each queue,

which absorbs in-flight packets after sending PAUSE
frames.

In addition to lossless traffic, lossy traffic may also be
present in datacenter networks [34]. To isolate these two traffic
types, the buffer is typically partitioned into two separate
pools: a lossless pool and a lossy pool. Unlike lossless traffic,
whose buffer is ingress-allocated, the buffer for lossy traffic is
managed from the egress perspective. Specifically, packets are
dropped when the egress queue length exceeds the allocated
buffer capacity.

C. Buffer Allocation From Ingress Perspective

The switching chip utilizes a Memory Management Unit
(MMU) to allocate the buffer to arriving packets. The sizes of
the private pool and headroom pool are explicitly configured.
The remaining buffer serves as shared buffer.

There is no explicit rule specifying how to configure the
private pool size. Nevertheless, the amount of private pool is
relatively small (e.g., 16% in Arista 7050× 3 switches [29]).

Different from the private pool, the size of the headroom
pool should be carefully configured to prevent packet loss.
This is because it takes some delay for a PAUSE frame to
take effect, and the MMU needs to reserve enough headroom
to absorb the arriving traffic during this delay. According to
[2], [3], [35], and [36], the headroom size for each ingress
queue (denoted by φ) is given by

Φ = 2 (C ·Dprop + LMTU) + 3840B (1)

where C is the capacity of the upstream link, Dprop is the
propagation delay of the upstream link, and LMTU is the
length of an MTU-sized packet. The rationale of such a setting
is as follows. The delay for PFC pause to take effect comprises
the following five parts:

1© Waiting delay: A port may be busy transmitting another
packet when a PAUSE frame is generated. The PAUSE
frame needs to wait for the transmission to be finished.
In the worst case, the port just begins to transmit the
first bit of an MTU-sized packet, and thus the PAUSE
frame needs to wait for LMTU/C time.

2© Propagation delay (of PAUSE frame): It takes Dprop

time for the PAUSE frame to arrive at the upstream
device. Dprop depends on the cable length and prop-
agation speed of signals. In datacenters, the distance
between two connected switches can be as large as 300
meters [3]. For single-mode fibers, the speed of light is
65% of that in a vacuum. As a result, the propagation
delay is ∼1.5µs.

3© Processing delay: It takes some time for the switch to
process the PAUSE frame and stop the transmission. The
PFC definition has capped this time to 3840B/C [35].

4© Response delay: When the upstream port decides to
execute the pause action, it might be sending another
packet. In the worst case, the switch just begins to
transmit the first bit of an MTU-sized packet. Thus, it
takes LMTU/C for the pause action to truly take effect.

5© Propagation delay (of the last packet): When the
upstream device stops sending packets, there are still
some in-flight packets on the link, which should also
be absorbed by the headroom. It takes another Dprop

time for the last sent packet to arrive at the downstream
switch.

Combining the above five parts results in Eq. 1.
The shared buffer is available to all queues. MMU utilizes

a buffer management scheme to ensure fair and efficient
allocation of the shared buffer among all queues. Among
various buffer management schemes, Dynamic Threshold (DT)
is the most common one on commodity switching chips [3],
[5], [24], [25], [26], [29], [32], [37], [38], [39],.

DT uses a threshold to restrict the shared buffer occupancy
of each queue. The threshold is dynamically adjusted accord-
ing to the remaining buffer size. Specifically, let T (t) denote
the threshold at time t, ωi,j

s (t) denote the amount of shared

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on August 21,2025 at 01:56:06 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON NETWORKING

buffer occupation for queue j in port i at time t, and Bs denote
the shared buffer size. The threshold is given by

T (t) = α ·

Bs −
Np∑
i=1

Nq∑
j=1

ωi,j
s (t)

 (2)

where α is a control parameter, Np denotes the number of
ports, and Nq denotes the number of queues per port. The
intuition behind DT is as follows. When the network is less
congested, the buffer occupancy is low and the remaining
buffer size is high. DT adjusts the threshold to a higher value,
which allows each queue to occupy more buffer, making the
buffer efficiently used. On the contrary, when the network is
more congested, the buffer occupancy is high and thus the
remaining buffer size is low. DT adjusts the threshold to a
lower value, which restricts the buffer usage of each queue,
ensuring fair sharing of the buffer among different queues.

Algorithm 1 Packet Placement

With PFC enabled, MMU monitors the ingress queue
lengths and decides where to place each arriving packet.
The overall workflow is outlined in Algorithm 1, and the
used notations are summarized in TABLE I. Generally, MMU
places packet in the order of private pool, shared pool, and
headroom pool, selecting the first pool with sufficient free
space.

Besides, MMU generates PFC PAUSE messages to
upstream devices based on the amount of shared buffer occu-
pancy (i.e., ωi,j

s (t)) and Xoff /Xon thresholds. With DT, the
Xoff/Xon thresholds are dynamic, namely Xoff = T (t) and
Xon = Xoff − δ. Each ingress queue transitions between
two states: ON and OFF state, as illustrated in Fig. 3. In
the ON state, the ingress queue turns to the OFF state when
the occupancy of shared pool becomes higher than Xoff .
Meanwhile, a PFC PAUSE frame is generated to the upstream
device. In the OFF state, the ingress queue turns into the ON
state when the headroom pool is empty and the occupancy of
shared pool drops below Xon. Meanwhile, a PFC RESUME
frame is generated to the upstream device.

III. MOTIVATION

In this section, we present the problem of the current
headroom allocation scheme.

A. Headroom Occupies Considerable Memory

It is expected that most of the memory should serve as
shared buffer to absorb bursty traffic without triggering PFC

TABLE I
KEY NOTIONS

Fig. 2. Buffer partition in a PFC-enabled switch.

Fig. 3. State transition diagram of PFC.

messages. However, with the current buffer allocation scheme,
the headroom buffer occupies considerable memory, which can
significantly squeeze “footroom” buffer1 and result in frequent
PFC messages.

Specifically, the current buffer allocation scheme indepen-
dently reserves a static headroom for every ingress queue [2],
[3]. Assume that each ingress queue requires Φ headroom. The
total headroom size (denoted by Bh) is given by

Bh = Np ×Nq × Φ (3)

where Np is the number of ingress ports, Nq is the number
of queues per port, and Φ is given by Eq. 1.

With this method, MMU has to allocate worst-case head-
room for every ingress queue, and headroom can occupy a
large fraction of memory. For example, Broadcom Trident2
switching chip contains 12MB memory. It has 32 40GbE ports
(i.e., Np = 32 and C = 40Gbps). For each port, the PFC

1For convenience, we define footroom as the buffer other than headroom.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on August 21,2025 at 01:56:06 UTC from IEEE Xplore. Restrictions apply.

SHAN et al.: EFFICIENT HEADROOM ALLOCATION WITH TWO-LEVEL FLOW CONTROL FOR LOSSLESS DCNs 5

Fig. 4. Trends of buffer in Broadcom’s switching chips.

Fig. 5. FCT vs. buffer size.

standard supports 8 queues (i.e., Nq = 8). Assume that the
MTU is 1500B (i.e., LMTU = 1500B) and Dprop = 1.5µs,
MMU needs to allocate ∼5.33MB memory for headroom
buffer in total, which occupies 44.4% of total memory.

With the growing link capacity, this situation gets worse.
The link speed in production DCN has grown from 1Gbps
to 40Gbps and 100Gbps in the past decade [5], [14] and
continues to grow. With higher link speed, MMU needs to
allocate more headroom to avoid buffer overflow. However, the
buffer size is limited by the chip area and cost, and thus cannot
scale with the switching capacity [15], [16], [17]. As a result,
the fraction of required headroom becomes increasingly large,
significantly squeezing the footroom buffer. Fig. 4 depicts the
trend of buffer size and the fraction of required headroom in
Broadcom’s switching chips, where we assume the presence
of eight traffic classes, as specified in IEEE 802.1Qbb [23],
with all classes enabled.

The switch buffer size per unit of capacity has decreased
by 4× in the last decade (from 157µs to 37µs), while the
fraction of required headroom has increased by 56% (from
43% to 67%).

Without enough “footroom” buffer, PFC messages can be
frequently triggered, which may result in serious performance
impairments (e.g., head-of-line blocking, congestion spread-
ing, collateral damage) and even network deadlocks.

To quantitatively demonstrate the performance degradation
brought by inadequate buffer, we perform a large-scale ns-
3 simulation. We build a 16 × 16 leaf-spine topology with
256 servers. Each link has 100Gbps capacity and 2µs latency.
Each switch is equipped with a 16MB buffer, emulating the
Broadcom Tomahawk switch chip [40] (more details in §V-B).
The headroom size is configured according to Eq. (1) and (3).
The congestion control algorithm is PowerTCP [41], which
can effectively keep persistent queue length low. We use the
widely-used web search workload [30] to generate realistic
DCN traffic. The total network load is 90%. Fig. 5 shows
the average flow completion time (FCT) with different buffer

Fig. 6. Headroom utilization.

sizes. The FCT with 14MB buffer is 78.1% worse than that
with 30MB buffer.

To alleviate this problem, current network operators have
to restrict the number of priority queues [3]. However, this ad
hoc approach can aggravate the head-of-line blocking problem,
as different services cannot be isolated and the congestion
of one point can spread to the entire network. Furthermore,
lots of studies [18], [42], [43], [44], [45] have shown that
multiple service queues can greatly improve the network
performance. Restricting the number of queues prevents the
network applications from benefiting from them.

B. Current Headroom Allocation Scheme Is Inefficient

Despite the increasingly large fraction of headroom, the
current static and independent headroom allocation scheme
(referred to as SIH) is still quite inefficient and wasteful. To
quantitatively illustrate this issue, we conduct a simulation
with the same settings as before, except that the congestion
control algorithm is DCQCN [2], which induces a higher
buffer occupancy. To examine the headroom efficiency, we
extract the local maximum values of headroom occupancy,
which indicates the actual required headroom size. Fig. 6
shows that the headroom utilization is only 4.96% at the
median and 25.33% at the 99th percentile, indicating that the
headroom buffer is significantly over-allocated most of the
time.

Next, we analyze the underlying reason behind SIH’s
inefficiency. To ensure lossless forwarding, SIH allocates the
headroom buffer based on the wost-case scenario, which has
two assumptions:
• Assumption 1. All ingress queues need to occupy the

headroom simultaneously.
• Assumption 2. During the time for the PAUSE frame

to take effect, the length of each ingress queue grows at
line rate, i.e., the ingress queue is continuously receiving
traffic at line rate without being drained.

However, we find that the above two assumptions are not
valid most of the time due to the following three observations.

Observation 1: Not all queues need to occupy headroom.
An ingress queue needs to occupy headroom only when it gets
congested and its queue length exceeds the Xoff threshold. In
reality, it is unlikely that all queues are congested at the same
time [21], i.e., Assumption 1 is typically not valid. Despite
this, SIH independently allocates worst-case headroom size
for all ingress queues. As a result, most headroom buffer
keeps unused. Fig. 7 shows the distribution of the number

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on August 21,2025 at 01:56:06 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON NETWORKING

Fig. 7. Number of queues in XOFF state.

Fig. 8. Traffic arrival rate to the XOFF queue (1 CoS, no sharing).

Fig. 9. Traffic arrival rate to the XOFF queue (7 CoSes, sharing).

of queues in the OFF state when the headroom buffer is being
occupied (the experiment settings are the same as above). We
can observe that, in over 60% cases, fewer than half of the
queues require occupying the headroom, indicating that over
50% of the headroom is over-allocated more often than not.

Observation 2: Traffic heading for different ingress queues
at the same port shares the uplink capacity. In a port, all
ingress queues are connected to the same uplink and thus the
traffic heading for them shares the link capacity. When a traffic
class of a port needs to be paused, its traffic arriving rate
should be lower than C as long as other traffic classes also
have in-flight packets on the uplink. In this case, Assumption
2 is not valid. Fig. 8 and Fig. 9 show the distribution of the
traffic arrival rates to an XOFF queue with flows classified
into 1 queue and 7 queues, respectively. With a single queue
exclusively using the uplink capacity (Fig. 8), the traffic arrival
rate can approach the line rate most of the time. In comparison,
with multiple queues sharing the uplink capacity, the traffic
arrival rate to an XOFF queue drops to ∼60Gbps at the median
(note that the line rate is 100Gbps).

Observation3: The headroom buffer is being drained
during the OFF state. When determining the headroom
requirement (§II-C), it is assumed that the traffic arrives at
line rate (denoted by C), causing the headroom occupancy to
increase at a rate of C. However, actually, the increasing rate
of headroom occupancy is also related to the traffic departure

Fig. 10. Traffic departure rate from the XOFF queue.

rate. Assuming that the traffic arrival rate towards an ingress
queue is C and the traffic departure rate is d, then the actual
increasing rate of headroom occupancy is C − d. In reality,
d > 0 unless all egress queues holding the traffic are being
paused. As a result, the buffer occupancy of the headroom
pool may grow at a rate lower than C, and Assumption 2 is
not valid. Fig. 10 shows that the traffic departure rate is over
20Gbps at the median, indicating that the required headroom
is over-allocated in half of the cases.

In sum, the underlying reason behind SIH’s inefficiency lies
in its static and queue-independent nature. Specifically, the
actual required headroom is dynamic to the traffic character-
istics. The static nature entails SIH allocating the worst-case
headroom to avoid buffer overflow. The worst-case, however,
rarely occurs. Furthermore, SIH independently allocates head-
room for all ingress queues, regardless of the fact that the
ingress queues at a port naturally share the uplink capacity.

C. Why Not Simply Reduce the Headroom Size

Given the inefficiency of SIH, a natural approach is to
oversubscribe the headroom size [21], [22], i.e., reserving
less headroom than the required amount Bh. However, this
approach, although improving the headroom efficiency, can
bring about the risk of packet loss. As shown in Fig. 7, Fig. 9,
and Fig. 10, the worst case, although rarely, indeed occurs
occasionally. In these cases, the oversubscribed headroom is
insufficient to avoid buffer overflow, leading to packet loss,
which is unacceptable for the RoCE transport, because packet
losses can significantly hurt the transmission performance due
to the “Go-back-N” strategy. In sum, the inefficiency of SIH
is inherent to its static and queue-independent nature, and
cannot be resolved by simply adjusting the headroom buffer
size. Thus, we choose to explore another headroom allocation
scheme.

IV. DSH DESIGN

To address the inefficiency problem of SIH, we propose
Dynamic and Shared Headroom (DSH) allocation, which aims
to efficiently allocate headroom while ensuring no congestion
loss. In this section, we first explain the key ideas behind DSH
in §IV-A. Then we present the details of our design in §IV-B,
§IV-C, §IV-D, and §IV-E. Finally, we discuss some issues of
DSH on various scenarios in §IV-F.

A. Key Ideas

DSH utilizes two ideas to achieve efficient headroom allo-
cation while ensuring no congestion loss.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on August 21,2025 at 01:56:06 UTC from IEEE Xplore. Restrictions apply.

SHAN et al.: EFFICIENT HEADROOM ALLOCATION WITH TWO-LEVEL FLOW CONTROL FOR LOSSLESS DCNs 7

Fig. 11. Buffer partition with DSH.

(1) DSH proactively reserves a small amount of buffer
as insurance headroom to avoid packet loss. Based on
Observation 2, different ingress queues in the same port share
the uplink capacity. Thus, to avoid buffer overflow under any
circumstances, there is no need to allocate Φ headroom for
each ingress queue. Rather, we only need to reserve Φ buffer
for each port. In this way, the amount of reserved headroom is
significantly reduced. However, the benefit comes at the cost
of performance isolation. When any ingress queue in a port
starts to occupy the insurance buffer, the entire upstream port
is paused. This compromises performance isolation among
different traffic classes. Thus, we also have the following
mechanism to make the port-wise pause rarely triggered, only
serving as an insurance measure.

(2) DSH dynamically allocates the headroom to con-
gested queues and makes the allocated headroom shared
among different ingress queues. Based on Observation 1,
an ingress queue needs to occupy headroom only when it
is congested. Therefore, instead of reserving headroom for
uncongested queues, DSH allocates headroom only when a
queue becomes congested.

Furthermore, Observations 2 and 3 suggest that the actual
headroom requirement varies with traffic characteristics.
Therefore, instead of allocating a fixed amount of headroom
for a congested queue, DSH dynamically adjusts the headroom
allocation based on observed traffic characteristics. In addition,
since the allocated headroom may not always be fully utilized,
DSH allows the headroom buffer to be shared across ingress
queues. In this way, DSH can take advantage of statistical
multiplexing to improve the buffer efficiency.

B. Buffer Organization

Fig. 11 shows the buffer organization with DSH. In addition
to the traditional buffer partitions, DSH further divides the
headroom into two parts: shared headroom and insurance
headroom. The insurance headroom is statically reserved for
each port to guarantee against buffer overflow. The shared
headroom is dynamically allocated as needed and shared
among different ingress queues.

Furthermore, as both shared headroom and shared footroom
are dynamically shared and allocated, DSH integrates them
into a single segment, collectively called shared buffer. Such a
design brings two benefits: (1) It facilitates the implementation
of DSH on switching chips, as the buffer partition is the
same as the existing one on commodity switching chips. (2)
It improves the buffer utilization. By integrating two kinds of

buffer, both headroom and footroom share the same piece of
buffer, increasing the degree of statistical multiplexing. As a
result, the buffer is utilized more efficiently.

C. Estimation of the Actual Required Headroom Per Queue

Based on Observations 2 and 3, the required headroom for
each ingress queue depends on traffic characteristics. Instead
of allocating the worst-case headroom (i.e., Φ), DSH estimates
headroom requirement based on traffic arrival and depar-
ture rates. Furthermore, to avoid port-level pauses caused by
insufficient headroom, DSH employs conservative headroom
estimation.

Specifically, the actual required headroom per ingress queue
can be given by

φ =

∫ D

0

g(t) dt (4)

where g(t) = d
dtq(t) is the gradient of queue length, and D

is the delay for the pause message to take effect.

Algorithm 2 Estimating φ

As the headroom size must be determined beforehand, DSH
predicts g(t) and φ using a conservative algorithm outlined
in Algorithm 2, which favors overestimation over underes-
timation to prevent port-wise pause. First, the instantaneous
queue length gradient g = ∆q

∆t is calculated upon every
packet arrival. To mitigate noise effects, we apply Exponential
Weighted Moving Average (EWMA) to smooth the gradient.
The average queue length gradient (gavg) is updated upon each
packet arrival as

gavg = (1− wg) · gavg + wg · g (5)

where wg weights the instantaneous gradient against the
historical average.

To prevent underestimation of the queue length gradient,
DSH incorporates variance using an approach similar to
Retransmission Timeout (RTO) maintenance [46]. On every
packet arrival, the mean deviation vavg is updated as

vavg = (1− wv) · vavg + wv · |gavg − g| (6)

Considering the variation, DSH estimates the queue length
gradient as

ĝ = gavg + k · vavg (7)

where k controls sensitivity to variations.
After estimating the queue length gradient ĝ, the headroom

is then given by
φ̂ = ĝ ×D (8)

The conceptual design involves computationally intensive
operations (e.g., division, multiplication, floating-point arith-
metic), which are infeasible for high-speed switches like

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on August 21,2025 at 01:56:06 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON NETWORKING

Fig. 12. Mapping function from queue length gradient to φ̂.

Tofino [47] due to nanosecond-level packet processing con-
straints. To facilitate implementation, DSH employs several
techniques to minimize computational overhead.

Algorithm 3 Estimating φ in Practice

To eliminate division operations, DSH implements divi-
sion using logarithm and exponent functions [48], [49]. As
demonstrated in Algorithm 3, ∆q

∆t can be reformulated as
2log2(∆q)−log2(∆t). The logarithm and exponent can be imple-
mented using lookup table [48].

To avoid multiplication, DSH configures the parameters
wg , wv , and k as powers of two, allowing multiplication
to be replaced with bit shifting operations. However, this
method cannot be applied to the computation of Eq. 8, as
neither ĝ nor D necessarily equals a power of two. To avoid
multiplication, DSH utilizes a mapping function to convert
ĝ to φ̂, as illustrated in Fig. 12. This mapping function can
be implemented as a lookup table with pre-calculated values,
thereby eliminating real-time multiplication computations.

Overall, Algorithm 3 presents the estimation of the required
headroom in practice.

D. Buffer Allocation and Management

The allocation of the private buffer remains unchanged. For
insurance headroom, DSH statically reserves some memory
for each ingress port. Assume that there are Np ports, the
insurance headroom size (denoted by Bi) is given by

Bi = Np × Φ (9)

where Φ is given by Eq. 1.
The remaining memory serves as shared buffer. DSH adopts

DT to dynamically allocate shared buffer for each ingress
queue. This is because DT has been widely used in commodity
switching chips for decades, proven to be adaptive and efficient
while simple to be implemented. Specifically, DSH uses a
threshold T (t) to restrict the buffer occupancy (including both

Fig. 13. An ingress queue can be considered as congested when the buffer
occupancy approaches T (t).

shared headroom and shared footroom) for each ingress queue.
The threshold T (t) is dynamically adjusted based on the
remaining shared buffer, given by Eq. 2. Note that the amount
of shared buffer occupancy (i.e., ωi,j

s (t)) in Eq.2 includes
the buffer occupancy of both shared headroom and shared
footroom with DSH.

After allocating the total buffer space for both shared head-
room and shared footroom, the next step is to determine the
portion of the buffer designated for shared headroom. The key
idea is to allocate φ̂ headroom to an ingress queue only when it
gets congested. This is implemented using a simple mechanism
based on the observation that, for a congested queue, its
shared buffer occupancy — represented as ωi,j

s (t) — should
approach its buffer allocation T (t). In contrast, for a non-
congested queue, ωi,j

s (t) remains significantly below T (t), as
illustrated in Fig. 13. Therefore, DSH allocates headroom to
a queue only if its queue length exceeds T (t) − τ , where τ
denotes the margin to the buffer allocation. This allows real-
time congestion detection using a comparator and a subtractor,
which are both cheap and fast.

Next, we analyze how to set τ . On the one hand, τ
should not be too large, otherwise the headroom is allocated
to a queue prematurely when it is not heavily congested
and unlikely to occupy headroom in the near future. On
the other hand, τ should not be too small, otherwise DSH
cannot allocate enough shared headroom from the free buffer.
Based on the above two considerations, we find that φ̂ is an
appropriate choice for τ . φ̂ is not large and is an estimation of
the required headroom for an ingress queue. DSH can likely
allocate φ̂ headroom for the queue when the buffer occupancy
reaches T (t)− φ̂.

Algorithm 4 Setting τ on Packet Arrival

There is still an issue that DSH may waste up to 50% of
the headroom with only one queue per port has traversing
traffic. In this case, only one queue per port requires headroom,
while DSH may allocate Φ + φ̂ headroom per port (i.e., Φ
insurance headroom + φ̂ shared headroom). To further improve
the efficiency, DSH set τ to 0 in this special case. This
adjustment can be achieved through a simple algorithm shown
in Algorithm 4. The basic idea is that, if all packets are heading
for the same queue within a time window, DSH sets τ = 0.
The length of the time window is 10ms.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on August 21,2025 at 01:56:06 UTC from IEEE Xplore. Restrictions apply.

SHAN et al.: EFFICIENT HEADROOM ALLOCATION WITH TWO-LEVEL FLOW CONTROL FOR LOSSLESS DCNs 9

E. Flow Control

We now demonstrate how flow control works with the above
buffer allocation scheme. DSH has two types of flow control
mechanisms to guarantee against packet loss while ensuring
performance isolation: queue-level flow control and port-level
flow control.

The queue-level flow control is similar to the PFC mech-
anism. Specifically, a PFC PAUSE frame is sent to the
upstream port when the amount of shared buffer occupancy
for an ingress queue becomes higher than the pause threshold
(denoted by Xqoff). Arriving at the upstream port, the PFC
PAUSE frame will suspend the packet transmission of the
corresponding traffic class. Furthermore, when the amount of
shared buffer occupancy for an ingress queue falls below a
resume threshold (denoted by Xqon), a PFC RESUME frame
is sent to the upstream port to recover the packet transmission
of the corresponding traffic class.

The only difference is the setting of Xqoff threshold. With
DSH, the Xqoff (t) threshold is set as

Xqoff (t) = T (t)− τ (10)

where τ = φ̂ with multiple queues active in each port and
τ = 0 otherwise. The settings of resume threshold is the same
as PFC. Specifically, the resume threshold Xqon is slightly
lower than the pause threshold, namely, Xqon = Xqoff − δq .
For example, according to [2], δq can be set to 2 MTUs.

Only queue-level flow control is not enough to avoid buffer
overflow, as the shared headroom is dynamically allocated as
needed rather than statically reserved beforehand, and thus
DSH cannot guarantee that every ingress queue can get φ̂
headroom when becoming congested. Consequently, DSH also
contains port-level flow control to avoid buffer overflow under
any circumstances.

The port-level flow control is triggered when the total
occupancy of shared footroom and headroom of all queues
in a port becomes higher than a pause threshold (denoted by
Xpoff). When triggered, the ingress port sends a port-level
PAUSE frame to the upstream port. Arriving at the upstream
port, the port-level PAUSE frame will suspend the packet
transmissions of all traffic classes. Furthermore, when the total
occupancy of shared footroom and headroom in a port falls
below a resume threshold (denoted by Xpon), a port-level
RESUME frame is sent to the upstream port to cancel the
suspension.

The Xpoff (t) threshold is set as

Xpoff (t) = Nq × T (t) (11)

Similar to the queue-level flow control, the resume threshold
Xpon is slightly lower than the pause threshold, namely,
Xpon = Xpoff − δp, where δp can be set to 2 MTUs based
on [2].

The intuition of the above equation is as follows. DSH
allocates T (t) buffer as footroom and headroom for each
ingress queue. Thus, for all ingress queues in a port, the total
allocated buffer is Nq×T (t). The rationale behind the intuition
is that DSH allows the ingress queues in the same port to
share the allocated buffer, especially headroom. Specifically,

by restricting the port-level buffer occupancy (rather than
queue-level), a congested queue can occupy the headroom
allocated to other queues (in the same port) if it has used up
its allocated headroom. As the traffic heading for the ingress
queues in the same port naturally shares the capacity of uplink,
port-level buffer share is both efficient and fair. In this way,
not only can DSH utilize the shared buffer more efficiently,
but also the port-level flow control can be less triggered.

F. Discussions

The port-level flow control can be implemented using PFC,
without introducing new flow control messages. The PFC
frame contains both priority enable and time vectors, each
comprising eight fields that support pausing and resuming
eight priorities independently. Port-level PAUSE/RESUME
messages can be realized by setting all fields in both priority
and time vectors accordingly. Furthermore, to achieve effec-
tive port-level flow control, we must establish conditions for
generating these port-level PAUSE/RESUME messages. The
pause threshold (Xpoff) is calculated as Nq · T (t), where Nq

represents the number of queues per port. This calculation
requires a multiplier with Nq and T (t) as inputs. Notably, as is
often the case, when Nq is a power of two, the calculation can
be simplified using only a shift register. The resume threshold
(Xpon) is defined as Xpon − δp, where δp is a configurable
parameter. Computing this threshold requires a subtractor with
Xpon and δp as inputs.

In the scenarios where lossless RDMA traffic coexists with
legacy lossy TCP traffic, competition for buffer resources may
arise. When both traffic types require buffer space, TCP traffic
could potentially impact RDMA performance. Nevertheless,
this interference occurs in the footroom rather than the head-
room [34], [50]. Since DSH specifically targets headroom
allocation for lossless traffic, addressing this interference falls
outside DSH’s scope.

Certain congestion control algorithms, such as DCQCN [2],
require sufficient footroom buffer to maintain high link utiliza-
tion [51]. By improving headroom efficiency, DSH enables
more footroom space for congestion control mechanisms,
thereby facilitating higher throughput performance.

DSH’s performance benefits increase with the number of
traffic classes (i.e., more queues per port). In practical deploy-
ments with fewer enabled traffic classes, DSH’s advantages
may be somewhat diminished. Nevertheless, DSH’s efficiency
is never worse than SIH. In the extreme case where only one
queue is enabled, DSH cannot dynamically share headroom
across queues. In this scenario, the headroom allocated by
DSH is Φ per port, equivalent to SIH.

V. EVALUATION

In this section, we evaluate DSH’s performance with both
testbed experiments and ns-3 simulations [52].

A. Microbenchmarks

In this part, we evaluate DSH’s basic performance with
carefully constructed microbenchmarks based on ns-3 simu-
lations. We emulate the Broadcom Tomahawk switching chip,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on August 21,2025 at 01:56:06 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON NETWORKING

Fig. 14. [Simulation] Mitigation of collateral damage.

Fig. 15. [Simulation] Performance isolation between different queues at the same port.

which has 32 100Gbps ports and 16MB shared memory. Each
port has 8 queues. One queue is reserved for ACK pack-
ets and PAUSE/RESUME messages, assigned to the highest
priority. Other seven queues are scheduled by the DWRR
algorithm with a quantum of 1600B. The link delay is 2µs
and thus Φ = 60000B. The total headroom size for SIH is
60000B×32×7 = 12.8MB. The private buffer size is 672KB
(3KB for each DWRR-scheduled queue). For DT, α is set to
1/16 according to [3]. For DSH, we set wg = wv = 0.25
and k = 4. The Xqon/Xpon threshold is the same as the
Xqoff /Xpoff threshold.

In this part, we evaluate DSH’s ability to mitigate collateral
damage with ns-3 simulations. We consider the same scenario
as above, which is shown in Fig. 14(a). All links are 100Gbps
and the propagation delay is 2µs. Two long-lived flows, F0

and F1, are sending traffic from H0 and H1 to R0 and R1,
respectively. After their throughputs reach 50Gbps, H2-H25

generate 24 concurrent fan-in flows to R1. Each flow has a
size of 64KB, which is smaller than a BDP and thus the fan-in
traffic is uncontrolled by congestion control algorithms.

Fig. 14 shows the throughput of F0. We can observe similar
results as testbed experiments that DSH can effectively avoid
performance degradation for F0. Furthermore, we find that the
state-of-the-art congestion control algorithms (Fig. 14(c) and
Fig. 14(d)) are not able to avoid the collateral damage. This
is because end-to-end congestion control requires at least 1
RTT to react to traffic changes. Within 1 RTT, it is the buffer
management scheme that determines whether PFC messages
can be avoided.

DSH incorporates port-level flow control. As a result, a
single congested queue can potentially pause the entire port.
In this part, we evaluate the performance isolation of DSH
among different queues at the same port. We consider a
scenario shown in Fig. 15(a). A switch is connected to 16

hosts with 100Gbps/2µs links. We divide these hosts and
the connected switch ports into 4 equivalent groups. In each
group, we generate two kinds of flows: interfered flows and
interfering flows. We evaluate the impact of interfering flows
on interfered flows. Take group 1 as an example, the interfered
flows are from Port 0/Port 1 to Port 2. Flows are generated
one by one and flow arrivals follow a Poisson process with
an average load of 0.2. Different from interfered flows, we
generate two interfering flows simultaneously, transmitting
64KB data from Port 0 and Port 1 to Port 3, respectively. As a
result, the interfering flows certainly induce buffer occupancy.
The load of interfering flows varies from 0.2 to 0.8 in order
to demonstrate their impact on interfered flows. These two
kinds of flows are classified into different traffic classes,
with interfered flows classified into Class of Service (CoS)
1 and interfering flows randomly classified into CoS 2-7.
Other settings remain unchanged. Ideally, the performance
of interfered flows should not be affected by the interfering
flows.

Fig. 15 shows the mean FCT of the interfered flows without
congestion control (Fig. 15(b)), with DCQCN (Fig. 15(c)),
and with PowerTCP (Fig. 15(d)). To show the effectiveness
of shared headroom in improving performance isolation, we
compare DSH’s performance with SIH and DSH without
shared headroom. We observe that the performance of DSH
is comparable to that of SIH, with the FCTs of interfered
flows unaffected by the interfering flows. Furthermore, with-
out shared headroom, DSH’s performance is significantly
degraded when the load of interfering flows becomes higher
than 0.5. These observations validate that the shared headroom
can effectively ensure performance isolation among different
queues at the same port.

One impairment brought by PFC messages is deadlock [3],
[7], [8], [9], [12], which is a serious problem as it can make

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on August 21,2025 at 01:56:06 UTC from IEEE Xplore. Restrictions apply.

SHAN et al.: EFFICIENT HEADROOM ALLOCATION WITH TWO-LEVEL FLOW CONTROL FOR LOSSLESS DCNs 11

Fig. 16. [Simulaiton] Deadlock avoidance.

a large part of the network unusable. In this part, we evaluate
the ability of DSH to avoid deadlock.

We consider a topology shown in Fig. 16(a), which is a leaf-
spine topology with two link failures marked with dashed lines
(i.e., S0-L3 and S1-L0). In the topology, there are two spine
switches (S0 and S1) and four leaf switches (L0 − L3). Each
leaf switch is connected to 16 hosts with 100Gbps downlinks,
and connected to two spine switches with 400Gbps uplinks.
The link delay is 2µs. We generate fan-in flows, which are
from L0 to L3, from L3 to L0, from L1 to L2, and from
L2 to L1, respectively. As a result, there is a cyclic buffer
dependency marked as red lines: S0 → L1 → S1 → L2 → S0.
The fan-in ratio (i.e., the number of flows) ranges from 1 to
15. The flow size is randomly chosen based on the Hadoop
workload [31], and flow arrivals follow a Poisson process.
The network load is 0.5 at the downlinks of each leaf switch.
Each scheme is tested 100 times and each simulation lasts for
100ms.

Fig. 16(b) shows the CDF of deadlock onset time. With SIH,
deadlock occurs for all simulations either with DCQCN [2] or
PowerTCP [41]. In comparison, DSH can avoid 96% of the
deadlocks with DCQCN and all deadlocks with PowerTCP.
This is because DSH can leave more “footroom” to absorb
bursty traffic, avoiding PFC messages.

B. Large-Scale Simulations

In this part, we evaluate DSH in a large-scale DCN topol-
ogy. The simulations are conducted on a Huawei Taishan 200
server, equipped with two Kunpeng 920 CPUs and 192GB of
memory.

We build a leaf-spine topology with 16 leaf switches, 16
spine switches, and 256 servers. Each leaf switch is connected
to 16 servers with 100Gbps downlinks and 16 spine switches
with 100Gbps uplinks, forming a full-bisection network. The
link delay is 2µs and thus the base RTT is 16µs across the
spine. We employ ECMP for load balancing.

We emulate the Broadcom Tomahawk switching chip. The
settings are the same as those in previous simulations.

We consider three end-to-end congestion control algorithms:
DCQCN [2], HPCC [5], and PowerTCP [41]. We use the
default parameter settings in their open-source simulations.

We generate two kinds of traffic: background traffic and
bursty fan-in traffic. The background traffic follows a one-to-
one pattern. The sender and receiver are randomly chosen. The
flow sizes are generated according to a web search workload

[30]. The fan-in traffic follows a many-to-one pattern, where
16 senders simultaneously transmit 64KB data to the same
receiver. The senders are randomly chosen and are in different
racks from the receiver. Flow arrivals follow a Poisson pro-
cess. The total network load is 0.9. The flows are randomly
classified into CoS 1-7. CoS 0 is reserved for ACK packets
and PFC PAUSE/RESUME frames.

We compare DSH with three alternative headroom allo-
cation schemes. (1) SIH: The de facto headroom allocation
scheme used in practice, where each queue is allocated a fixed
amount of headroom [2], [3], namely, Φ = 60, 000B. The total
headroom pool size is 12.8MB. (2) Adaptive PFC Headroom:
A mechanism proposed in IEEE P802.1Qdt [53] that auto-
matically determines the headroom required for each queue
through precise link delay measurements [54]. (3) Headroom
Oversubscription: An approach adopted by Microsoft [21] and
SONiC [22] to improve headroom efficiency by allocating
less headroom than SIH. In our evaluation, we configure an
oversubscription ratio of 80%.

Fig. 17 shows the total pause duration with different
congestion control algorithms. For clear comparisons, we
normalize each pause duration to the value achieved by
SIH. With more footroom, DSH can significantly reduce the
PFC messages, especially with less fan-in traffic. Specifi-
cally, without congestion control, DSH can reduce the total
pause duration by ∼18.0%-46.8%. With DCQCN, DSH can
reduce the total pause duration by ∼18.8%-52.8%. With
HPCC and PowerTCP, DSH can more effectively reduce
the pause duration, i.e., reducing the total pause duration
by ∼19.3%-99.9% and ∼19.4%-90.6%, respectively. This is
because HPCC and PowerTCP is more effective in keeping
the persistent queue length low. As a result, the PFC messages
are mainly triggered by bursty fan-in traffic whose flow size
are within 1 BDP, and the transmission is not controlled by
end-to-end congestion control algorithms. In such cases, buffer
management plays a more important role in reducing PFC
messages.

Adaptive PFC headroom marginally reduces PFC pause
duration by accurately determining Φ. However, as analyzed in
§III-B, headroom inefficiency primarily stems from the static
and queue-independent nature of SIH. Thus, the improvements
achieved by adaptive PFC headroom are limited.

Headroom oversubscription can even deteriorate the PFC
pause duration without congestion control or with DCQCN.
The reason is that, unlike HPCC and PowerTCP that maintain
low persistent buffer occupancy, non-congestion-control or
DCQCN can introduce high buffer occupancy from both bursty
short flows and long flows. In these scenarios, insufficient
headroom due to oversubscription leads to packet drops and
subsequent retransmissions, introducing additional traffic that
exacerbates congestion. Consequently, PFC pause duration
increases. For instance, we find that, with a background traffic
load of 0.7 and fan-in traffic load of 0.2, the overall traffic
volume of headroom oversubscription is ∼29% larger than
that of SIH with DCQCN.

Fig. 18 and Fig. 19 show the normalized flow completion
time (FCT) of fan-in traffic and background traffic, respec-
tively. The results show that both fan-in flows can benefit

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on August 21,2025 at 01:56:06 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON NETWORKING

Fig. 17. Total pause duration in large-scale simulations.

Fig. 18. Average FCTs of fan-in traffic in large-scale simulations.

Fig. 19. Average FCTs of background traffic in large-scale simulations.

from DSH. Without congestion control, DSH can reduce the
average FCTs of fan-in traffic and background traffic by up
to ∼51.7% and ∼36.9%, respectively. With DCQCN, DSH
can reduce the average FCTs of fan-in traffic and background
traffic by up to ∼52.9% and ∼37.9%, respectively. With
HPCC, DSH can reduce the average FCTs of fan-in traffic and
background traffic by up to ∼78.8% and ∼30.6%, respectively.
With PowerTCP, DSH can reduce the average FCTs of fan-in
traffic and background traffic by up to ∼59.1% and ∼45.2%,
respectively. This is because DSH can provide more footroom
to absorb transient bursty traffic and avoid PFC messages.

In comparison, adaptive PFC headroom yields only modest
improvements in flow completion time (FCT). Specifically,
with DCQCN, FCT improvements for fan-in traffic and back-
ground traffic are within ∼8% and ∼6%, respectively. This
modest improvement occurs because adaptive PFC headroom
only focuses on determining the worst-case headroom require-
ment, without addressing the fundamental inefficiency of static
and queue-independent allocation.

Headroom oversubscription may extend the average FCTs
of fan-in and background traffic by up to ∼24.3% and
∼33.3%, respectively. This performance degradation results

from packet drops due to insufficient headroom. As analyzed
in §III-C, although rare, the worst-case scenario does occur.
Consequently, simple oversubscription of the headroom pool
can result in packet loss, significantly extending FCT since
RoCE NICs typically employ Go-back-N loss recovery. The
experiment results substantiate our analysis in §III-C.

Furthermore, we evaluate DSH across different DCN
applications. Besides the web search workload, we also
consider other three realistic workloads: a data mining work-
load [55], a cache workload [31], a Hadoop workload
[31], and a storage workload [56]. Other settings remain
unchanged. Fig. 20 shows the FCT of background traf-
fic across different workloads with DCQCN. The results
confirm that DSH can improve FCT with different DCN
workloads.

The insurance headroom is essential to ensure lossless for-
warding, because the dynamically allocated shared headroom
may be insufficient to accommodate in-flight packets. In this
part, we evaluate the effectiveness of insurance headroom.
As shown in Fig. 21(a) and Fig. 21(b), without insurance
headroom, the packets can be dropped. In comparison, with a
small amount of insurance headroom, DSH can ensure lossless

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on August 21,2025 at 01:56:06 UTC from IEEE Xplore. Restrictions apply.

SHAN et al.: EFFICIENT HEADROOM ALLOCATION WITH TWO-LEVEL FLOW CONTROL FOR LOSSLESS DCNs 13

Fig. 20. Average FCTs across different workloads (transport: DCQCN).

Fig. 21. Effectiveness of insurance headroom.

Fig. 22. Average FCTs with high burst traffic.

forwarding under any traffic load. Additionally, Fig. 21(c) and
Fig. 21(d) show that the insurance headroom can significantly
improve the FCT of background traffic, especially under high
traffic load.

To evaluate DSH under high burst conditions, we generate
1024-to-1 fan-in traffic, in which 1024 flows — from 255
senders to a single receiver — are generated at a time. Each
flow transmits 8KB data. Other settings remain unchanged.
Fig. 22 demonstrates that DSH outperforms all alternative
schemes. With DCQCN, DSH improves average FCTs of fan-
in and background traffic by up to ∼56.2% and ∼38.6%,
respectively. With PowerTCP, DSH improves average FCTs of
fan-in and background traffic by up to ∼57.3% and ∼42.8%,
respectively.

In practical datacenter environments, traffic distribution can
be asymmetric due to diverse applications across hosts. To
assess DSH under such conditions, we divide hosts into four
groups: (1) Group 1: The hosts under leaf switches 0-3, which
are generating both background traffic and fan-in traffic. The
total traffic load is 0.9, with the load of fan-in traffic varying
from 0.2 to 0.8. (2) Group 2: The hosts under leaf switches
4-7, which are generating background traffic with a load of

0.9. (3) Group 3: The hosts under leaf switches 8-11, which
are generating background traffic with a load of 0.6. (4)
Group 4: The hosts under leaf switches 12-15, which are
generating background traffic with a load of 0.3. Other settings
remain unchanged. Fig. 23 demonstrates that DSH signifi-
cantly improves FCTs across most scenarios. With DCQCN,
DSH improves average FCTs of fan-in and background traffic
by up to ∼52.9% and ∼54.1%, respectively. With PowerTCP,
DSH improves average FCTs of fan-in and background traffic
by up to ∼63.3% and ∼63.5%, respectively. We also observe
that, with DCQCN, DSH can incur worse FCT when the load
of fan-in traffic is 0.2. Upon further investigation, we con-
firmed that this performance degradation stems from elevated
buffer occupancy generated by background traffic — an issue
that end-to-end congestion control algorithms are expected to
mitigate. Since this phenomenon relates to congestion control
effectiveness rather than headroom allocation, addressing it
falls beyond DSH’s scope.

In this part, we consider a scenario that the application can
concurrently generate multiple flows. To simulate such appli-
cations, we increase the concurrency of background traffic by
generating 8 flows at a time. Other settings remain unchanged.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on August 21,2025 at 01:56:06 UTC from IEEE Xplore. Restrictions apply.

14 IEEE TRANSACTIONS ON NETWORKING

Fig. 23. Average FCTs with asymmetric traffic distribution.

Fig. 24. Average FCTs with high-concurrency application.

Fig. 25. Performance isolation in large-scale simulations.

Fig. 24 shows that DSH consistently improves the FCT
performance for both fan-in and background traffic, regardless
of whether DCQCN or PowerTCP is used. Specifically, with
DCQCN, DSH can improve the average FCT of fan-in and
background traffic by up to ∼48.2% and ∼34.7%, respectively.
With PowerTCP, DSH can improve the average FCT of fan-
in and background traffic by up to ∼53.9% and ∼42.9%,
respectively.

With different queues sharing headroom in DSH, the perfor-
mance of different traffic classes can be potentially affected.
To evaluate how DSH affects performance isolation, we create
two kinds of traffic: interfering traffic and interfered traffic.
The interfering traffic is randomly classified into CoS 2-7. The
interfered traffic is classified into CoS 1. Both kinds of traffic
follow a one-to-one pattern, i.e., the source and destination
are randomly chosen. Flow arrivals follow a Poisson process
and flow sizes are randomly chosen based on the web-search
workload [30]. To show the impact of interfering traffic on
interfered traffic, we fix the load of interfered traffic at 0.1
and vary the load of interfering traffic from 0.1 to 0.9.

Fig. 25 shows the average FCT of interfered traffic as
the load of interfering traffic varies. DSH can achieve

comparable performance to SIH, which isolates different
queues with dedicated headroom. This result indicates that
DSH can effectively ensure performance isolation. Besides,
without shared headroom, DSH’s performance is signifi-
cantly degraded under high traffic load, demonstrating the
effectiveness of shared headroom in ensuring performance
isolation.

VI. RELATED WORK

In recent years, several literatures [34], [50], and [57]
point out the issue of isolation between RDMA and TCP
traffic when sharing the buffer. L2BM [50] allocates more
buffer to ingress queues with higher draining rate, enabling
better burst absorption and reducing PFC messages. Reverie
[34] consolidates the admission controls of RDMA traffic
at ingress and TCP traffic at egress, and applies a low-
pass filter to queue lengths in admission control, helping
absorb transient traffic bursts. BRT [57] allocates buffer
space separately for RDMA and TCP traffic, based on
the number of persistent long queues and total dequeue
rates. In comparison, DSH only focuses on buffer man-
agement for RDMA traffic and is orthogonal to these
approaches.

Another line of work focuses on buffer management
for footroom or lossy traffic. EDT [58], FAB [59], TDT
[60], and Protean [49] allocate more buffer to bursty
traffic to enhance burst absorption capability. NDT [61]
employs deep reinforcement learning to dynamically adjust
the parameters of DT. ABM [62] considers both buffer
occupancy and drain rate to achieve isolation, burst tol-
erance, and bounded buffer drain time. Credence [63]
enhances buffer management by incorporating machine-
learning-based predictions of future packet arrivals. Occamy
[64] achieves agile adjustment of buffer allocation through

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on August 21,2025 at 01:56:06 UTC from IEEE Xplore. Restrictions apply.

SHAN et al.: EFFICIENT HEADROOM ALLOCATION WITH TWO-LEVEL FLOW CONTROL FOR LOSSLESS DCNs 15

preemption. SPFC [65] allocates more footroom buffer to
victim ports to avoid throughput loss. These buffer man-
agement schemes are designed for lossy traffic or footroom
allocation, and thus are not applicable to the headroom
allocation.

VII. CONCLUSION

In datacenter networks, PFC-enabled switches need to
reserve some buffer as headroom to avoid buffer over-
flow. However, with the growing link speed, the buffer
becomes increasingly inadequate, and the headroom occu-
pies a considerable fraction of buffer, significantly squeezing
the buffer space for accommodating normal traffic. As a
result, PFC messages can be frequently generated, bringing
about serious performance impairments. In this paper, we
argue that the current static and queue-independent head-
room allocation scheme is inherently inefficient. We propose
Dynamic and Shared Headroom (DSH) allocation scheme,
which dynamically allocates headroom to congested queues
and enables allocated headroom to be shared among different
queues. Extensive simulations show that DSH can signifi-
cantly reduce the PFC messages and improve the network
performance.

REFERENCES

[1] D. Shan et al., “Less is more: Dynamic and shared headroom allocation
in PFC-enabled datacenter networks,” in Proc. IEEE 43rd Int. Conf.
Distrib. Comput. Syst. (ICDCS), Jul. 2023, pp. 591–602.

[2] Y. Zhu et al., “Congestion control for large-scale RDMA deployments,”
in Proc. ACM Conf. Special Interest Group Data Commun., Aug. 2015,
pp. 523–536.

[3] C. Guo et al., “RDMA over commodity Ethernet at scale,” in Proc. ACM
SIGCOMM Conf., Aug. 2016, pp. 202–215.

[4] R. Mittal et al., “TIMELY: RTT-based congestion control for the
datacenter,” in Proc. ACM Conf. Special Interest Group Data Commun.,
Aug. 2015, pp. 537–550.

[5] Y. Li et al., “HPCC: High precision congestion control,” in Proc. ACM
Special Interest Group Data Commun., Aug. 2019, pp. 44–58.

[6] Z. He et al., “MasQ: RDMA for virtual private cloud,” in Proc. Annu.
Conf. ACM Special Interest Group Data Commun. Appl., Technol.,
Architectures, Protocols Comput. Commun., Jul. 2020, pp. 1–14.

[7] B. Stephens, A. L. Cox, A. Singla, J. Carter, C. Dixon, and W. Felter,
“Practical DCB for improved data center networks,” in Proc. IEEE Conf.
Comput. Commun., Apr. 2014, pp. 1824–1832.

[8] S. Hu et al., “Tagger: Practical PFC deadlock prevention in data center
networks,” IEEE/ACM Trans. Netw., vol. 27, no. 2, pp. 889–902, Apr.
2019.

[9] K. Qian, W. Cheng, T. Zhang, and F. Ren, “Gentle flow control: Avoiding
deadlock in lossless networks,” in Proc. ACM Special Interest Group
Data Commun., Aug. 2019, pp. 75–89.

[10] W. Cheng, K. Qian, W. Jiang, T. Zhang, and F. Ren, “Re-architecting
congestion management in lossless Ethernet,” in Proc. USENIX NSDI,
2020, pp. 19–36.

[11] C. Tian et al., “P-PFC: Reducing tail latency with predictive PFC
in lossless data center networks,” IEEE Trans. Parallel Distrib. Syst.,
vol. 31, no. 6, pp. 1447–1459, Jun. 2020.

[12] X. C. Wu and T. S. Eugene Ng, “Detecting and resolving PFC deadlocks
with ITSY entirely in the data plane,” in Proc. IEEE Conf. Comput.
Commun., May 2022, pp. 1928–1937.

[13] J. Hu, C. Zeng, Z. Wang, H. Xu, J. Huang, and K. Chen, “Load bal-
ancing in PFC-enabled datacenter networks,” in Proc. 6th Asia–Pacific
Workshop Netw., Jul. 2022, pp. 21–28.

[14] A. Singh et al., “Jupiter rising: A decade of clos topologies and
centralized control in Google’s datacenter network,” in Proc. ACM Conf.
Special Interest Group Data Commun., Aug. 2015, pp. 183–197.

[15] W. Bai, S. Hu, K. Chen, K. Tan, and Y. Xiong, “One more config
is enough: Saving (DC)TCP for high-speed extremely shallow-buffered
datacenters,” in Proc. IEEE Conf. Comput. Commun., Jul. 2020,
pp. 2007–2016.

[16] G. Zeng, J. Qiu, Y. Yuan, H. Liu, and K. Chen, “FlashPass: Proactive
congestion control for shallow-buffered WAN,” in Proc. IEEE 29th Int.
Conf. Netw. Protocols (ICNP), Nov. 2021, pp. 1–12.

[17] P. Goyal, P. Shah, N. K. Sharma, M. Alizadeh, and T. E. Anderson,
“Backpressure flow control,” in Proc. Workshop Buffer Sizing, Dec.
2019, pp. 1–3.

[18] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout, “Homa: A
receiver-driven low-latency transport protocol using network priorities,”
in Proc. Conf. ACM Special Interest Group Data Commun., Aug. 2018,
pp. 221–235.

[19] S. Hu et al., “Aeolus: A building block for proactive transport in
datacenters,” in Proc. Annu. Conf. ACM Special Interest Group Data
Commun. Appl., Technol., Architectures, Protocols Comput. Commun.,
Jul. 2020, pp. 422–434.

[20] Q. Zhang, V. Liu, H. Zeng, and A. Krishnamurthy, “High-resolution
measurement of data center microbursts,” in Proc. Internet Meas. Conf.,
Nov. 2017, pp. 78–85.

[21] W. Bai et al., “Empowering Azure storage with RDMA,” in Proc.
USENIX NSDI, 2023, pp. 49–67.

[22] SONiC Command Line Interface Guide. Accessed: Aug. 17,
2025. [Online]. Available: https://github.com/sonic-net/sonic-utilities/
blob/master/doc/Command-Reference.md#dynamic-buffer-management

[23] Priority-Based Flow Control, Standard 802.1Qbb, 2011. [Online]. Avail-
able: https://1.ieee802.org/dcb/802-1qbb

[24] S. Das and R. Sankar, “Broadcom smart-buffer technology in data center
switches for cost-effective performance scaling of cloud applications,”
Broadcomreport, Palo Alto, CA, USA, Tech. Rep., 2012.

[25] (2014). Congestion Management and Buffering in Data Center
Networks. [Online]. Available: http://learn.extremenetworks.com/rs/
extreme/images/Congestion-Management-and-Buffering-wp.pdf

[26] A. Arcilla and T. Palmer. (2019). Broadcom Trident 3 Platform
Performance Analysis. [Online]. Available: https://docs.broadcom.com/
doc/12395356

[27] B. Wheeler. (2019). Tomahawk 4 Switch First to 25.6TBPS. [Online].
Available: https://docs.broadcom.com/doc/12398014

[28] (2014). Cisco Nexus 9300 Platform Buffer and Queuing Architecture.
[Online]. Available: https://www.cisco.com/c/en/us/products/collateral/
switches/nexus-9000-series-switches/white-paper-c11-732452.pdf

[29] (2013). Arista 7050X3 Series Switch Architecture. [Online].
Available: https://www.arista.com/assets/data/pdf/Whitepapers/
7050X3ArchitectureWP.pdf

[30] M. Alizadeh et al., “Data center TCP (DCTCP),” in Proc. ACM
SIGCOMM Conf., Aug. 2010, pp. 63–74.

[31] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” in Proc. ACM Conf. Special
Interest Group Data Commun., Aug. 2015, pp. 123–137.

[32] (2021). BCM88800 Traffic Management Architecture. [Online]. Avail-
able: https://docs.broadcom.com/doc/88800-DG1-PUB

[33] NVIDIA.(2022). How to Configure Mellanox Spectrum Switch for Loss-
less RoCE. [Online]. Available: https://enterprise-support.nvidia.com/s/
article/howto-configure-mellanox-spectrum-switch-for-lossless-roce

[34] V. Addanki, W. Bai, S. Schmid, and M. Apostolaki, “Reverie: Low pass
filter-based switch buffer sharing for datacenters with RDMA and TCP
traffic,” in Proc. USENIX NSDI, 2024, pp. 651–668.

[35] (2015). Priority Flow Control: Build Reliable Layer 2 Infrastructure.
[Online]. Available: https://www.cisco.com/c/en/us/products/collateral/
switches/nexus-7000-series-switches/whitepaperc11-542809.pdf

[36] Proposal for Priority Based Flow Control. Accessed: Aug. 17, 2025.
[Online]. Available: https://www.ieee802.org/1/files/public/docs2008/bb-
pelissier-pfc-proposal-0508.pdf

[37] Mellanox. (2018). Understanding the Alpha Parameter in the Buffer
Configuration of Mellanox Spectrum Switches. [Online]. Avail-
able: https://support.mellanox.com/s/article/howto-configure-mellanox-
spectrum-switch-for-lossless-roce

[38] Cisco Nexus 9000 Series NX-OS Quality of Service Configuration
Guide. Accessed: Aug. 17, 2025. [Online]. Available:
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/
sw/6-x/qos/configuration/guide/b Cisco Nexus 9000 Series NX-
OS Quality of Service Configuration Guide.pdf

[39] Y. He, N. Batta, and I. Gashinsky, “Understanding switch buffer uti-
lization in CLOS data center fabric,” in Proc. Workshop Buffer Sizing,
2019, pp. 1–3.

[40] Tomahawk. Accessed: Aug. 17, 2025. [Online]. Available: https://
people.ucsc.edu/∼warner/Bufs/tomahawk

[41] V. Addanki, O. Michel, and S. Schmid, “PowerTCP: Pushing the
performance limits of datacenter networks,” in Proc. USENIX NSDI,
2021, pp. 51–70.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on August 21,2025 at 01:56:06 UTC from IEEE Xplore. Restrictions apply.

16 IEEE TRANSACTIONS ON NETWORKING

[42] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang, “Information-
agnostic flow scheduling for commodity data centers,” in Proc. USENIX
NSDI, 2015, pp. 455–468.

[43] M. P. Grosvenor et al., “Queues don’t matter when you can JUMP
them!,” in Proc. USENIX NSDI, 2015, pp. 1–14.

[44] N. K. Sharma, M. Liu, K. Atreya, and A. Krishnamurthy,
“Approximating fair queueing on reconfigurable switches,” in Proc.
USENIX NSDI, 2018, pp. 1–16.

[45] L. Chen, J. Lingys, K. Chen, and F. Liu, “AuTO: Scaling deep rein-
forcement learning for datacenter-scale automatic traffic optimization,”
in Proc. Conf. ACM Special Interest Group Data Commun., Aug. 2018,
pp. 191–205.

[46] V. Jacobson, “Congestion avoidance and control,” in ACM SIGCOMM,
Aug. 1988, pp. 314–329.

[47] Intel Tofino. Accessed: Aug. 17, 2025. [Online]. Available: https://
www.intel.com/content/www/us/en/products/network-io/programmable-
ethernet-switch.html

[48] N. K. Sharma et al., “Evaluating the power of flexible packet process-
ing for network resource allocation,” in Proc. USENIX NSDI, 2017,
pp. 67–82.

[49] H. Almasi, R. Vardekar, and B. Vamanan, “Protean: Adaptive manage-
ment of shared-memory in datacenter switches,” in Proc. IEEE Conf.
Comput. Commun., May 2023, pp. 1–10.

[50] Y. Liu, J. Han, K. Xue, R. Li, and J. Li, “L2BM: Switch buffer
management for hybrid traffic in data center networks,” in Proc. IEEE
43rd Int. Conf. Distrib. Comput. Syst. (ICDCS), Jul. 2023, pp. 1–11.

[51] S. Yan, X. Wang, X. Zheng, Y. Xia, D. Liu, and W. Deng, “ACC:
Automatic ECN tuning for high-speed datacenter networks,” in Proc.
ACM SIGCOMM Conf., Aug. 2021, pp. 384–397.

[52] Ns-3. Accessed: Aug. 17, 2025. [Online]. Available: https://
www.nsnam.org/

[53] Priority-Based Flow Control Enhancements, Standard P802.1Qdt, 2024.
[Online]. Available: https://1.ieee802.org/tsn/802-1qdt/

[54] Adaptive PFC Headroom and PTP, Standard IEEE 802.1, 2021.
[Online]. Available: https://www.ieee802.org/1/files/public/docs2021/
new-lv-adaptive-pfc-headroom-and-PTP-0602-v03.pdf

[55] A. Greenberg et al., “VL2: A scalable and flexible data center
network,” in Proc. ACM SIGCOMM Conf. Data Commun., Aug. 2009,
pp. 51–62.

[56] Alibaba Storage Flow Size Distribution. Accessed: Aug. 17, 2025.
[Online]. Available: https://github.com/alibaba-edu/High-Precision-
Congestion-Control/tree/master/traffic gen

[57] S. Zhang et al., “BRT: Buffer management for RDMA/TCP mix-flows
in datacenter networks,” IEEE Trans. Netw. Service Manage., vol. 21,
no. 4, pp. 4146–4160, Aug. 2024.

[58] D. Shan, W. Jiang, and F. Ren, “Absorbing micro-burst traffic
by enhancing dynamic threshold policy of data center switches,”
in Proc. IEEE Conf. Comput. Commun. (INFOCOM), Apr. 2015,
pp. 118–126.

[59] M. Apostolaki, L. Vanbever, and M. Ghobadi, “FAB: Toward flow-aware
buffer sharing on programmable switches,” in Proc. Workshop Buffer
Sizing, Dec. 2019, pp. 1–6.

[60] S. Huang, M. Wang, and Y. Cui, “Traffic-aware buffer management in
shared memory switches,” in Proc. IEEE Conf. Comput. Commun., May
2021, pp. 1–10.

[61] M. Wang, S. Huang, Y. Cui, W. Wang, and Z. Liu,
“Learning buffer management policies for shared memory
switches,” in Proc. IEEE Conf. Comput. Commun., May 2022,
pp. 730–739.

[62] V. Addanki, M. Apostolaki, M. Ghobadi, S. Schmid, and L. Vanbever,
“ABM: Active buffer management in datacenters,” in Proc. ACM
SIGCOMM Conf., Aug. 2022, pp. 36–52.

[63] V. Addanki, M. Pacut, and S. Schmid, “Credence: Augmenting datacen-
ter switch buffer sharing with ML predictions,” in Proc. USENIX NSDI,
2024, pp. 613–634.

[64] D. Shan et al., “Occamy: A preemptive buffer management for on-chip
shared-memory switches,” in Proc. 20th Eur. Conf. Comput. Syst., Mar.
2025, pp. 1365–1382.

[65] H. Huang et al., “Re-architecting buffer management in lossless
Ethernet,” IEEE/ACM Trans. Netw., vol. 32, no. 6, pp. 4749–4764, Dec.
2024.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on August 21,2025 at 01:56:06 UTC from IEEE Xplore. Restrictions apply.

